Diseño conceptual de una planta de pirólisis lenta para la producción de biocarbón derivado de residuos de cultivos y residuos agroindustriales de yuca

Conceptual design of a slow pyrolysis plant for producing biochar derived from crop residues and agro-industrial cassava wastes.

Contenido principal del artículo

Resumen

El biocarbón, producido a partir de residuos agrícolas o agroindustriales se está perfilando como un subproducto agroindustrial de interés. Las diversas aplicaciones que puede tener el biocarbón pueden ofrecer alternativas lucrativas para los productores colombianos. En el presente trabajo se analiza la posibilidad de producir biocarbón a partir de residuos de yuca (ramas y cáscaras). Se muestran posibles aplicaciones del biocarbón y se evalúa su potencial técnico con datos de la región de la Orinoquia. El diseño conceptual parte de análisis de laboratorio realizados en el laboratorio de pirolisis de la universidad de los Llanos, se probaron diferentes tratamientos de pirólisis lenta y las muestras de biocarbón se caracterizaron teniendo en cuenta el pH, la conductividad y las propiedades térmicas. La biomasa con la que se obtuvieron mejores resultados en cuanto a rendimientos de biocarbón fueron las ramas de yuca (41.22%, b. s.). Los resultados del análisis técnico indican que el montaje de una planta de pirolisis de ramas y cáscaras es viable en la Orinoquia. El biocarbón entonces, se presenta como una alternativa técnicamente posible, ya que en la cadena productiva de la yuca se dispone fácilmente de una gran cantidad de biomasa residual. Esta biomasa tiene aplicaciones potenciales como biocombustible, enmienda del suelo, agente de captura de carbono, e incluso electrodos de supercondensadores en el ámbito electrónico.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias

• Abdullah, N., Mohd-Taib, R., Mohamad-Aziz, N. S., Omar, M. R. y Md-Disa, N. (2023). Banana pseudo-stem biochar derived from slow and fast pyrolysis process. Heliyon, 9(1), e12940. https://doi.org/10.1016/j.heliyon.2023.e12940

• Açıkalın, K. (2022). Evaluation of orange and potato peels as an energy source: A comprehensive study on their pyrolysis characteristics and kinetics. Biomass Conversion and Biorefinery, 12(2), 501-514. https://doi.org/10.1007/s13399-021-01387-z

• Adeboye, B. S., Adewole, B. Z., Adedoja, A. M., Obayopo, S. O., Asere, A. A., Kayode, O., Idris, M. O. y Okediran, I. K. (2021). Optimization and modeling of process parameters on the yield of enhanced pyrolysis oil during co-pyrolysis of cassava peel with polystyrene. Environmental Challenges, 5, 100347. https://doi.org/10.1016/j.envc.2021.100347

• Alarcón, F., y Dufour, D. (1998). Almidón agrio de Yuca en Colombia. Tomo 1: Producción y Recomendaciones. En F. Motta, y G. Rodríguez (Eds.), Almidón agrio de Yuca en Colombia. CIAT. http://hdl.handle.net/20.500.12324/17538

• Alonso-Gómez, L. A., Celis-Carmona, D. D., Rodríguez-Sánchez, Y. F., Castro-Ladino, J. R. y Solarte-Toro, J. C. (2024). Biochar production from cassava waste biomass: A techno-economic development approach in the Colombian context. Bioresource Technology Reports, 26, 101872. https://doi.org/10.1016/j.biteb.2024.101872

• Alonso‐Gómez, L. A., Heredia‐Olea, E., Serna‐Saldivar, S. O. y Bello‐Pérez, L. A. (2019). Whole unripe plantain (Musa paradisiaca L.) as raw material for bioethanol production. Journal of the Science of Food and Agriculture, 99(13), 5784-5791. https://doi.org/10.1002/jsfa.9847

• Alonso-Gómez, L., Cruz-Dominguez, A., Jiménez-Madrid, D. y Ocampo-Duran, Á. (2016). Biochar as an amendment in an oxisol and its efect in the grow of corn. Revista U.D.C.A Actualidad & Divulgación Científica, 19(2), 341-349. https://doi.org/10.31910/rudca.v19.n2.2016.88

• Alonso-Gómez, L., Niño-López, A. M., Romero-Garzón, A. M., Pineda-Gómez, P., del Real-Lopez, A. y Rodriguez-Garcia, M. E. (2016). Physicochemical transformation of cassava starch during fermentation for production of sour starch in Colombia. Starch - Stärke, 68, 1-9. https://doi.org/10.1002/star.201600059

• Athira, G., Bahurudeen, A y Appari, S. (2021). Thermochemical Conversion of Sugarcane Bagasse: Composition, Reaction Kinetics, and Characterisation of By-Products. Sugar Tech, 23(2), 433-452. https://doi.org/10.1007/s12355-020-00865-4

• Bhattacharya, T., Khan, A., Ghosh, T., Kim, J. T. y Rhim, J.-W. (2024). Advances and prospects for biochar utilization in food processing and packaging applications. Sustainable Materials and Technologies, 39, e00831. https://doi.org/10.1016/j.susmat.2024.e00831

• Camelo-Méndez, G. A., Tovar, J. y Bello-Pérez, L. A. (2018). Influence of blue maize flour on gluten-free pasta quality and antioxidant retention characteristics. Journal of Food Science and Technology, 55(7), 2739-2748. https://doi.org/10.1007/s13197-018-3196-9

• Canales, N. y Trujillo, M. (2021). La red de valor de la yuca y su potencial en la bioeconomía de Colombia. Instituto de Ambiente de Estocolmo, 1-30.

• Cárdenas, L. (21 de julio de 2022). Yuca País inicia la entrega de beneficios que buscan fortalecer la cadena de valor de la yuca en el Caribe. Agrosavia. https://www.agrosavia.co/noticias/yuca-pais

• Cardona-Alzate, C. A., Moncada-Botero, J. y Aristizábal-Marulanda, V. (2018). Biorefineries: Design and Analysis. CRC Press. https://doi.org/10.1201/9781315114088

• Castaño-Carvajal, M. F., Correa-Giraldo, D. y Agudelo-Laverde (2019). Elaboración de productos tipo tallarín libres de gluten y evaluación de sus propiedades fisicoquímicas. Revista U.D.C.A Actualidad y Divulgación Científica, 22(1). https://doi.org/10.31910/RUDCA.V22.N1.2019.1194

• Chiranthika, N. N. G., Chandrasekara, A. y Gunathilake, K. D. P. P. (2022). Physicochemical characterization of flours and starches derived from selected underutilized roots and tuber crops grown in Sri Lanka. Food Hydrocolloids, 124, 107272. https://doi.org/10.1016/j.foodhyd.2021.107272

• Chisenga, S. M., Workneh, T. S., Bultosa, G. y Alimi, B. A. (2019). Progress in research and applications of cassava flour and starch: A review. Journal of Food Science and Technology, 56(6), 2799-2813. https://doi.org/10.1007/s13197-019-03814-6

• Cruz, G., Rodrigues, A. D. L. P., da Silva, D. F. y Gomes, W. C. (2021). Physical–chemical characterization and thermal behavior of cassava harvest waste for application in thermochemical processes. Journal of Thermal Analysis and Calorimetry, 143(5), 3611-3622. https://doi.org/10.1007/s10973-020-09330-6

• Dávila-Caro, L. I., Pugliese-Barbosa, K., Castillo-Santiago, Y., Albis-Arrieta, A. R., Yepes-Maya, D. M., Ocampo-Batlle, E. A., Grillo-Renó, M. L., Espinosa-Sarmiento, A. L. y Restrepo-Betancourt, J. B. (2023). Valorización energética de biomasa residual de yuca para precursores de alto valor energético: Caso pirólisis. Tecnología en Marcha. https://doi.org/10.18845/tm.v36i10.7007

• de Souza, J. M. y de Figueiredo L. L. L. (2021). Soil-cement brick with cassava wastewater. Use of Cassava Wastewater and Scheelite Residues in Ceramic Formulations, 11-31. https://doi.org/10.1007/978-3-030-58782-6_2

• Ding, J., Zhen, F., Kong, X., Hu, Y., Zhang, Y. Y Gong, L. (2024). Effect of Biochar in Modulating Anaerobic Digestion Performance and Microbial Structure Community of Different Inoculum Sources. Fermentation, 10(3), 151. https://doi.org/10.3390/fermentation10030151

• Egbosiuba, T. C. (2022). Biochar and bio-oil fuel properties from nickel nanoparticles assisted pyrolysis of cassava peel. Heliyon, 8(8), e10114. https://doi.org/10.1016/j.heliyon.2022.e10114

• Foong, S. Y., Abdul, L. N. S., Liew, R. K., Yek, P. N. Y., & Lam, S. S. (2020). Production of biochar for potential catalytic and energy applications via microwave vacuum pyrolysis conversion of cassava stem. Materials Science for Energy Technologies, 3, 728-733. https://doi.org/10.1016/j.mset.2020.08.002

• Gopal, M., Gupta, A., Shahul, H. K., Sathyaseelan, N., Khadeejath, R. T. H. y Thomas, G. V. (2020). Biochars produced from coconut palm biomass residues can aid regenerative agriculture by improving soil properties and plant yield in humid tropics. Biochar, 2(2), 211-226. https://doi.org/10.1007/s42773-020-00043-5

• Grand View Research (2023). Biochar Market Size, Share & Trends Analysis Report By Technology (Gasification, Pyrolysis), By Application (Agriculture, Others), By Region (North America, Asia Pacific), And Segment Forecasts, 2024 – 2030. Grand View Research. https://www.grandviewresearch.com/industry-analysis/biochar-market

• Gudala, M., Naiya, T. K. y Govindarajan, S. K. (2021). Remediation of heavy oil transportation problems via pipelines using biodegradable additives: An experimental and artificial intelligence approach. SPE Journal, 26(2), 1050-1071. https://doi.org/10.2118/203824-PA

• Gurtner, D., Kresta, M., Hupfauf, B., Götz, P., Nussbaumer, R., Hofmann, A. y Pfeifer, C. (2023). Mechanical strength characterisation of pyrolysis biochar from woody biomass. Energy, 285, 129366. https://doi.org/10.1016/j.energy.2023.129366

• Hoyos-Yela, N., Pérez-Imbachí, R., Mosquera-Sánchez, S. A. y Paz-Peña, S. P. (2019). Efecto de la aplicación de un recubrimiento de almidón de yuca modificado por vía ácida sobre el tomate larga vida. Revista U.D.C.A Actualidad & Divulgación Científica, 22(2). https://doi.org/10.31910/rudca.v22.n2.2019.1388

• IMARC. (2021). Cassava processing market: Global industry trends, share, size, growth, opportunity and forecast 2021–2026. Businesswire. https://www.businesswire.com/news/home/20210524005470/en/Global-Cassava-Processing-Market-2021-to-2026---Industry-Trends-Share-Size-Growth-Opportunity-and-Forecasts---ResearchAndMarkets.com

• Kanwal, S., Chaudhry, N., Munir, S. y Sana, H. (2019). Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse). Waste Management, 88, 280-290. https://doi.org/10.1016/j.wasman.2019.03.053

• Keshav, P. K., Banoth, C., Kethavath, S. N. y Bhukya, B. (2023). Lignocellulosic ethanol production from cotton stalk: An overview on pretreatment, saccharification and fermentation methods for improved bioconversion process. Biomass Conversion and Biorefinery, 13(6), 4477-4493. https://doi.org/10.1007/s13399-021-01468-z

• Khater, E.-S., Bahnasawy, A., Hamouda, R., Sabahy, A., Abbas, W. y Morsy, O. M. (2024). Biochar production under different pyrolysis temperatures with different types of agricultural wastes. Scientific Reports, 14(1), 2625. https://doi.org/10.1038/s41598-024-52336-5

• Liu, G., Liu, L., Liu, H. y Zheng, H. (2024). Investigating CO2 sequestration properties of biochar shotcrete. Construction and Building Materials, 443, 137779. https://doi.org/10.1016/j.conbuildmat.2024.137779

• Meili, L., Godoy, R. P. S., Soletti, J. I., Carvalho, S. H. V., Ribeiro, L. M. O., Silva, M. G. C., Vieira, M. G. A. y Gimenes, M. L. (2019). Cassava (Manihot esculenta Crantz) stump biochar: Physical/chemical characteristics and dye affinity. Chemical Engineering Communications, 206(7), 829-841. https://doi.org/10.1080/00986445.2018.1530991

• Mian, M. M., Ao, W. y Deng, S. (2023). Sludge-based biochar adsorbent: Pore tuning mechanisms, challenges, and role in carbon sequestration. Biochar, 5(1), 83. https://doi.org/10.1007/s42773-023-00288-w

• MinAgricultura. (2021). Reporte:Área, Producción y Rendimiento Nacional por Cultivo. Agronet. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1

• Murthy, G. S. (2019). Systems Analysis Frameworks for Biorefineries. En Pandey, A., Larroche, C., Gnansounou, E., Khanal, S. K., Dussap, C. G. y Ricke, S. (Eds.), (pp. 77-92). Academic press. https://doi.org/10.1016/B978-0-12-816856-1.00003-8

• Ortiz-Sanchez, M. y Cardona-Alzate, C. A. (2022). Analysis of the routes for biomass processing towards sustainable development in the conceptual design step: Strategy based on the compendium of bioprocesses portfolio. Bioresource Technology, 350, 126852. https://doi.org/10.1016/j.biortech.2022.126852

• Padi, R. K. y Chimphango, A. (2020). Feasibility of commercial waste biorefineries for cassava starch industries: Techno-economic assessment. Bioresource Technology, 297, 122461. https://doi.org/10.1016/j.biortech.2019.122461

• Patra, B. R., Nanda, S., Dalai, A. K. y Meda, V. (2021). Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products. Chemosphere, 285, 131431. https://doi.org/10.1016/j.chemosphere.2021.131431

• Pawar, A., Panwar, N. L., Jain, S., Jain, N. K. y Gupta, T. (2023). Thermal degradation of coconut husk waste biomass under non-isothermal condition. Biomass Conversion and Biorefinery, 13(9), 7613-7622. https://doi.org/10.1007/s13399-021-01657-w

• Rangabhashiyam, S. y Balasubramanian, P. (2019). The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application—A review. Industrial Crops and Products, 128, 405-423. https://doi.org/10.1016/j.indcrop.2018.11.041

• Rivera, T. C., Andrade, R. S., Labarta, R., Calle, F. y Becerra López-Lavelle, L. (2021). Boletín informativo del sector yuquero Colombia 2007-2020. Centro único del CGIAR. https://hdl.handle.net/10568/116234

• Sanni, L., Maziya-Dixon, B., Akanya, J., Okoro, C., Alaya, Y., Egwuonwu, C., Okechukwu, R., Ezedinma, C., Akoroda, M.O., Lemchi, L., Ogbe, F., Tarawali, G., Mkumbira, J., Ospina-Patino, M., Ssemakula, G. y Dixon, A. (2005). Standards for Cassava Products and Guidelines for Export. IITA. https://www.researchgate.net/publication/265794625_Standards_for_Cassava_Products_and_Guidelines_for_Export

• Sasounian, R., Martinez, R. M., Lopes, A. M., Giarolla, J., Rosado, C., Magalhães, W. V., Velasco, M. V. R., y Baby, A. R. (2024). Innovative approaches to an eco-friendly cosmetic industry: a review of sustainable ingredients. Clean Technologies, 6(1), 176-198. https://doi.org/10.3390/cleantechnol6010011

• Siddiqui, M. T. H., Nizamuddin, S., Mubarak, N. M., Shirin, K., Aijaz, M., Hussain, M. y Baloch, H. A. (2019). Characterization and Process Optimization of Biochar Produced Using Novel Biomass, Waste Pomegranate Peel: A Response Surface Methodology Approach. Waste and Biomass Valorization, 10(3), 521-532. https://doi.org/10.1007/s12649-017-0091-y

• Simpson, I. K., Owusu, F. W. A., Boakye-Gyasi, M. E., Entsie, P., Bayor, M. T. y Ofori-Kwakye, K. (2022). Pharmaceutical Applications of Glucose Syrup from High Quality Cassava Flour in Oral Liquid Formulations. International Journal of Food Science, 2022(1), 6869122. https://doi.org/10.1155/2022/6869122

• Tan, Z., Li, Y., Chen, F., Liu, J., Zhong, J., Guo, L., Zhang, R. y Chen, R. (2024). Challenges and Perspectives of the Conversion of Lignin Waste to High-Value Chemicals by Pyrolysis. Processes, 12(3), 589. https://doi.org/10.3390/pr12030589

• Tepecik, M., Ekren, S., Ongun, A. R. y Sarikahya, N. B. (2024). Effects of biochar treatments on the elemental composition of tobacco (Nicotiana tabacum L.) leaves based on the priming period. Heliyon, 10(1), E23307. https://doi.org/10.1016/j.heliyon.2023.e23307

• Tsolis, V. y Barouchas, P. (2023). Biochar as Soil Amendment: The Effect of Biochar on Soil Properties Using VIS-NIR Diffuse Reflectance Spectroscopy, Biochar Aging and Soil Microbiology—A Review. Land, 12(8), 1580. https://doi.org/10.3390/land12081580

• Uchechukwu-Agua, A. D., Caleb, O. J. y Opara, U. L. (2015). Postharvest Handling and Storage of Fresh Cassava Root and Products: A Review. Food and Bioprocess Technology, 8(4), 729-748. https://doi.org/10.1007/S11947-015-1478-Z

• Wang, L., Olsen, M. N. P., Moni, C., Dieguez-Alonso, A., de la Rosa, J. M., Stenrød, M., Liu, X. y Mao, L. (2022). Comparison of properties of biochar produced from different types of lignocellulosic biomass by slow pyrolysis at 600 °C. Applications in Energy and Combustion Science, 12, 100090. https://doi.org/10.1016/j.jaecs.2022.100090

• Yaashikaa, P. R., Kumar, P. S., Varjani, S. y Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570

• Zhang, G., Chen, Z., Chen, T., Jiang, S., Evrendilek, F., Huang, S., Tang, X., Ding, Z., He, Y., Xie, W. y Liu, J. (2024). Energetic, bio-oil, biochar, and ash performances of co-pyrolysis-gasification of textile dyeing sludge and Chinese medicine residues in response to K2CO3, atmosphere type, blend ratio, and temperature. Journal of Environmental Sciences, 136, 133-150. https://doi.org/10.1016/j.jes.2022.10.009