Controlador difuso para compensación de variaciones de peso en bandas transportadoras
Fuzzy controller for weight variation compensation on conveyor belts
Contenido principal del artículo
Resumen
En el presente documento se muestra el diseño de un controlador difuso tipo II con el cual se realiza compensación de variaciones de peso en bandas transportadoras, controladas por un motor. Las variaciones de peso en el material se han establecido con una variabilidad de ±0.5 Kg. Para el ajuste de la velocidad de la banda se emplea la propiedad de variación del rango de cada función de pertenencia para que se acople a las variaciones de peso, donde el ajuste de la velocidad de la banda es el parámetro de retroalimentación del sistema. El sistema genera una compensación por variaciones de peso para que se mantenga regulada la velocidad de la banda, sin importar las variaciones de peso de cada unidad trasferida, logrando de esta manera el objetivo esperado. La respuesta del sistema retroalimentado, donde se incluyen variaciones de peso, muestra que no varía la respuesta de control que es el efecto deseado ante los cambios.
Detalles del artículo
Palabras clave
Referencias
Chunyu Yang, Lingchao Bu, Bin Chen, Energy modeling and online parameter identification for permanent magnet synchronous motor driven belt conveyors, Measurement, Volume 178, 2021, 109342, ISSN 0263- 2241, https://doi.org/10.1016/j. measurement.2021.109342.
J. Ji, C. Miao, X. Li and Y. Liu, “Research on speed control algorithm of belt conveyor based on controllable parameter PSO- PID,” 2020 7th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China, 2020, pp. 2136-2140, doi: 10.1109/ICISCE50968.2020.00419.
Debasis Acharya, Ankur Rai, Dushmanta Kumar Das, Optimal rule based fuzzy- PI controller for core power control of nuclear reactor, Annals of Nuclear Energy, Volume 194, 2023, 110118, ISSN 0306-4549, https://doi.org/10.1016/j. anucene.2023.110118.
Han Zhang, Liangkun Wang, Weixing Shi, Seismic control of adaptive variable stiffnessintelligentstructuresusingfuzzy control strategy combined with LSTM, Journal of Building Engineering, Volume 78, 2023, 107549, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2023.107549.
Muhammad Taimoor, Xiao Lu, Wasif Shabbir, Chunyang Sheng, Neural network observer based on fuzzy auxiliary sliding-mode-control for nonlinear systems, Expert Systems with Applications, Volume 237, Part A, 2024, 121492, ISSN 0957-4174, https://doi.org/10.1016/j. eswa.2023.121492.
Yifan Hu, Wenhui Liu, Baoping Ma, Event- trigger-based composite adaptive fuzzy control for nonlinear time- varying state constraint systems with asymmetric input saturation, European Journal of Control, 2023, 100892, ISSN 0947-3580, https://doi.org/10.1016/j.ejcon.2023.100892.
Wenting Song, Shaocheng Tong, Fuzzy optimal tracking control for nonlinear underactuated unmanned surface vehicles, Ocean Engineering, Volume 287, Part 1, 2023, 115700, ISSN 0029-
, https://doi.org/10.1016/j.oceaneng.2023.115700.
Wanmin Li, Haitong Xu, Xiaobin Liu, Yan Wang, Youdi Zhu, Xiaojun Lin, Zhixin Wang, Yugong Zhang, Regenerative braking control strategy for pure electric vehicles based on fuzzy neural network, Ain Shams Engineering Journal, 2023, 102430, ISSN 2090-4479, https://doi.org/10.1016/j.asej.2023.102430.
Alireza Rouhanian, Hossein Aliamooei- Lakeh, Saeed Aliamooei-Lakeh, Mohammadreza Toulabi, Improved load frequency control in power systems with high penetration of wind farms using robust fuzzy controller, Electric Power Systems Research, Volume 224, 2023,
, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2023.109511.
Nourhan A. Maged, Hany M. Hasanien, Essamudin A. Ebrahim, Marcos Tostado- Véliz, Rania A. Turky, Francisco Jurado, Optimal Real-time implementation of fuzzy logic control strategy for performance enhancement of autonomous microgrids, International Journal of Electrical Power & Energy Systems, Volume 151, 2023, 109140, ISSN 0142-0615, https://doi.org/10.1016/j. ijepes.2023.109140.
Hua Zheng, Wen-Bo Xie, Anh-Tu Nguyen, Dong Qu, A model reconstruction approach for control synthesis of Takagi- Sugeno fuzzy systems, Fuzzy Sets and Systems, Volume 469, 2023, 108640, ISSN 0165-0114, https://doi.org/10.1016/j. fss.2023.108640.
Hadi Delavari, Ali Sharifi, Adaptive reinforcement learning interval type II fuzzy fractional nonlinear observer and controller for a fuzzy model of a wind turbine, Engineering Applications of Artificial Intelligence, Volume 123, Part B, 2023, 106356, ISSN 0952-1976, https://doi. org/10.1016/j.engappai.2023.106356.
Hamed Yadegari, Jalil Beyramzad, Esmaeel Khanmirza, Magnetorquers- based satellite attitude control using interval type-II fuzzy terminal sliding mode control with time delay estimation, Advances in Space Research, Volume 69, Issue 8, 2022, Pages 3204-3225, ISSN 0273-1177, https://doi.org/10.1016/j. asr.2022.01.018.
Prakash Chandra Sahu, Sonalika Mishra, Ramesh Chandra Prusty, Sidhartha Panda, Improved-salp swarm optimized type-II fuzzy controller in load frequency control of multi area islanded AC microgrid, Sustainable Energy, Grids and Networks, Volume 16, 2018, Pages 380-392, ISSN 2352-4677, https://doi.org/10.1016/j.segan.2018.10.003.
Hituraj Sahu, Ramakalyan Ayyagari, Interval Fuzzy Type-II Controller for the Level Control of a Three Tank System, IFAC-PapersOnLine, Volume 49, Issue 1, 2016, Pages 561-566, ISSN 2405-
, https://doi.org/10.1016/j.ifacol.2016.03.114.
Pratap Anbalagan, Young Hoon Joo, Stabilization analysis of fractional- order nonlinear permanent magnet synchronous motor model via interval type-2 fuzzy memory-based fault- tolerant control scheme, ISA Transactions, 2023, ISSN 0019-0578, https://doi.org/10.1016/j.isatra.2023.08.021.
T. Deepa, D. Subbulekshmi, and S. Angalaeswari, “Modeling, analysis, and design of a fuzzy logic controller for sustainable system using MATLAB,” in Power Converters, Drives and Controls for Sustainable Operations, 2024, pp. 731–747. doi: 10.1002/9781119792918.ch24.
R. Wang, D. X. Gao, and Y. J. Zhang, “Finite time command filtered adaptive fuzzy control for a twin roll inclined casting system,” Metalurgija, vol. 63, no. 1, pp. 17–20, 2024, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168783576&partnerID=40&md5=1509a3f0b55abfaba760f3 64528516ca
K. Shiev, S. Ahmed, N. Shakev, and A. V Topalov, “Trajectory control of manipulators using an adaptive parametric type-2 fuzzy CMAC friction and disturbance compensator,” in Studies in Computational Intelligence, vol. 586, 2016, pp. 63–82. doi: 10.1007/978-3-319-14194-7_4.
V. Azimi, M. B. Menhaj, and A. Fakharian, “Tool position tracking control of a nonlinear uncertain flexible robot manipulator by using robust H2/H∞ controller via T–S fuzzy model,” Sadhana- Acad. Proc. Eng. Sci., vol. 40, no. 2, pp. 307– 333, 2015, doi: 10.1007/s12046-015-0354-x.