Pecado antigénico original entre coronavirus comunes humanos y SARS-CoV-2: implicaciones clínicas de COVID-19

Original antigenic sin between common human coronaviruses and SARS-CoV-2: clinical implications of COVID-19

Contenido principal del artículo

Resumen

El objetivo fue llevar a cabo una revisión sistemática acerca del fenómeno del pecado antigénico original (OAS) en pacientes con enfermedad por coronavirus 2019 que presenten anticuerpos o células T de reactividad cruzada generados previamente por coronavirus humanos (HCoV) endémicos, así como las implicaciones que tiene el mismo sobre la respuesta humoral, la gravedad de la enfermedad y la eficacia de la vacunación contra el SARS-CoV-2. El protocolo PRISMA sirvió de base para la organización de la revisión sistemática. Se realizaron búsquedas de estudios en tres bases de datos científicas: NCBI, BVS y EMBASE haciendo uso de los siguientes términos MESH: pecado antigénico original, SARS-COV-2, memoria inmunológica, reactividad cruzada, coronavirus humano NL63, coronavirus humano 229E y coronavirus humano OC43. Se encontraron 956 artículos utilizando el método de búsqueda. Entre ellos, 724 artículos de MEDLINE, 200 artículos de EMBASE y 28 artículos de la BVS. Para la revisión sistemática, se incluyeron 60 artículos tras eliminar los duplicados y aplicar los criterios de inclusión y exclusión. La memoria inmunológica generada por HCoV endémicos tiene la capacidad de inducir inmunopatología a través del pecado antigénico original, incrementando los títulos de inmunoglobulinas (Ig) clase G o clase A de reactividad cruzada contra epítopos no neutralizantes del SARS-CoV-2 y disminuyendo la capacidad de respuesta de los anticuerpos de novo contra epítopos neutralizantes, el cuadro clínico puede empeorar gracias a la amplificación de la infección dependiente de anticuerpos (ADE). Finalmente, no existe evidencia de que las actuales vacunas contra el SARS-CoV-2 provoquen ADE o se vean afectada por el OAS.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias

• Aguilar-Bretones, M., Fouchier, R. A., Koopmans, M. P. y van Nierop, G. P. (2023). Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. The Journal of clinical investigation, 133(1), e162192. https://doi.org/10.1172/JCI162192

• Aguilar-Bretones, M., Westerhuis, B. M., Raadsen, M. P., de Bruin, E., Chandler, F. D., Okba, N. M., et al. (2021). Seasonal coronavirus–specific B cells with limited SARS-CoV-2 cross-reactivity dominate the IgG response in severe COVID-19. The Journal of clinical investigation, 131(21). https://doi.org/10.1172/JCI150613

• Ajmeriya, S., Kumar, A., Karmakar, S., Rana, S. y Singh, H. (2022). Neutralizing antibodies and antibody-dependent enhancement in COVID-19: A perspective. Journal of the Indian Institute of Science, 102(2), 671-687. https://doi.org/10.1007/s41745-021-00268-8

• Banerjee, A., Mossman, K. y Baker, M. L. (2021). Zooanthroponotic potential of SARS-CoV-2 and implications of reintroduction into human populations. Cell Host & Microbe, 29(2), 160-164. https://doi.org/10.1016/j.chom.2021.01.004

• Barnes, C. O., West, A. P., Huey-Tubman, K. E., Hoffmann, M. A., Sharaf, N. G., Hoffman, P. R., et al. (2020). Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell, 182(4), 828-842. https://doi.org/10.1016/j.cell.2020.06.025

• Beretta, A., Cranage, M. y Zipeto, D. (2020). Is cross-reactive immunity triggering COVID-19 immunopathogenesis? Frontiers in immunology, 11, 567710. https://doi.org/10.3389/fimmu.2020.567710

• Braun, J., Loyal, L., Frentsch, M., Wendisch, D., Georg, P., Kurth, F., et al. (2020). SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature, 587(7833), 270-274. https://doi.org/10.1038/s41586-020-2598-9

• Brown, E. L. y Essigmann, H. T. (2021). Original antigenic sin: the downside of immunological memory and implications for COVID-19. MSphere, 6(2), 10-1128. https://doi.org/10.1128/mSphere.00056-21

• Buckley, P. R., Lee, C. H., Pereira Pinho, M., Ottakandathil Babu, R., Woo, J., Antanaviciute, A., Simmons, A. y Koohy, H. (2022). HLA‐dependent variation in SARS‐CoV‐2 CD8+ T cell cross‐reactivity with human coronaviruses. Immunology, 166(1), 78-103. https://doi.org/10.1111/imm.13451

• Buggert, M., Vella, L. A., Nguyen, S., Wu, V. H., Chen, Z., Sekine, T., et al. (2020). The identity of human tissue-emigrant CD8+ T cells. Cell, 183(7), 1946-1961. https://doi.org/10.1016/j.cell.2020.11.019

• Cao, Y., Su, B., Guo, X., Sun, W., Deng, Y., Bao, L., et al. (2020). Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell, 182(1), 73-84. https://doi.org/10.1016/j.cell.2020.05.025

• Crowley, A. R., Natarajan, H., Hederman, A. P., Bobak, C. A., Weiner, J. A., Wieland-Alter, W., et al. (2021). Boosting of cross-reactive antibodies to endemic coronaviruses by SARS-CoV-2 infection but not vaccination with stabilized spike. Elife, 11, e75228. https://doi.org/10.1101/2021.10.27.21265574

• Cui, J., Li, F. y Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature reviews microbiology, 17(3), 181-192. https://doi.org/10.1038/s41579-018-0118-9

• Dai, L., Zheng, T., Xu, K., Han, Y., Xu, L., Huang, E., et al. (2020). A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell, 182(3), 722-733. https://doi.org/10.1016/j.cell.2020.06.035

• Evans, J. P. y Liu, S. L. (2023). Challenges and prospects in developing future SARS-coV-2 vaccines: overcoming original antigenic sin and inducing broadly neutralizing antibodies. The Journal of Immunology, 211(10), 1459-1467. https://doi.org/10.4049/jimmunol.2300315

• Gagne, M., Moliva, J. I., Foulds, K. E., Andrew, S. F., Flynn, B. J., Werner, A. P., et al. (2022). mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell, 185(9), 1556-1571. https://doi.org/10.1016/j.cell.2022.03.038

• Garcia-Beltran, W. F., Lam, E. C., Denis, K. S., Nitido, A. D., Garcia, Z. H., Hauser, B. M., et al. (2021). Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell, 184(9), 2372-2383. https://doi.org/10.1016/j.cell.2021.03.013

• Grifoni, A., Weiskopf, D., Ramirez, S. I., Mateus, J., Dan, J. M., Moderbacher, C. R., et al. (2020). Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 181(7), 1489-1501. https://doi.org/10.1016/j.cell.2020.05.015

• Grimwood, K., Lambert, S. B. y Ware, R. S. (2020). Endemic Non–SARS-CoV-2 human coronaviruses in a community-based Australian birth cohort. Pediatrics, 146(5), e2020009316. https://doi.org/10.1542/peds.2020-009316

• Gu, H., Chen, Q., Yang, G., He, L., Fan, H., Deng, Y. Q., et al. (2020). Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science, 369(6511), 1603-1607. https://doi.org/10.1126/science.abc4730

• Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., et al. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 19(7), 409-424. https://doi.org/10.1038/s41579-021-00573-0

• Hoepel, W., Chen, H. J., Geyer, C. E., Allahverdiyeva, S., Manz, X. D., de Taeye, S. W., et al. (2021). High titers and low fucosylation of early human anti–SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Science Translational Medicine, 13(596), eabf8654. https://doi.org/10.1126/scitranslmed.abf8654

• Israelow, B., Mao, T., Klein, J., Song, E., Menasche, B., Omer, S. B. y Iwasaki, A. (2021). Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. Science Immunology, 6(64), eabl4509. https://doi.org/10.1126/sciimmunol.abl4509

• Jiang, S., Hillyer, C. y Du, L. (2020). Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends in immunology, 41(5), 355-359. https://doi.org/10.1016/j.it.2020.03.007

• Kan, A. K. C. y Li, P. H. (2023). Inactivated COVID-19 vaccines: potential concerns of antibody-dependent enhancement and original antigenic sin. Immunology Letters, 259, 21-23. https://doi.org/10.1016/j.imlet.2023.05.007

• Khan, S., Nakajima, R., Jain, A., De Assis, R. R., Jasinskas, A., Obiero, J. M., et al. (2020). Analysis of serologic cross-reactivity between common human coronaviruses and SARS-CoV-2 using coronavirus antigen microarray. BioRxiv. https://doi.org/10.1101/2020.03.24.006544

• Lesmes-Rodríguez, L. C., Lambarey, H., Chetram, A., Riou, C., Wilkinson, R. J., Joyimbana, W., et al. (2023). Previous exposure to common coronavirus HCoV-NL63 is associated with reduced COVID-19 severity in patients from Cape Town, South Africa. Frontiers in Virology, 3, 1125448. https://doi.org/10.3389/fviro.2023.1125448

• Lesmes-Rodríguez, L. C., Pedraza-Castillo, L. N. y Jaramillo-Hernández, D. A. (2024). HCoV-NL63 and HCoV-HKU1 seroprevalence and its relationship with the clinical features of COVID-19 patients from Villavicencio, Colombia. Biomédica, 44(3), 340-354. https://doi.org/10.7705/biomedica.7168

• Loyal, L., Braun, J., Henze, L., Kruse, B., Dingeldey, M., Reimer, U., et al. (2021). Cross-reactive CD4+ T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science, 374(6564), eabh1823. https://doi.org/10.1126/science.abh1823

• Lv, H., Wu, N. C., Tsang, O. T. Y., Yuan, M., Perera, R. A., Leung, W. S., et al. (2020). Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. Cell reports, 31(9), 107725. https://doi.org/10.1016/j.celrep.2020.107725

• Ma, Z., Li, P., Ji, Y., Ikram, A., y Pan, Q. (2020). Cross-reactivity towards SARS-CoV-2: the potential role of low-pathogenic human coronaviruses. The Lancet Microbe, 1(4), e151. https://doi.org/10.1016/S2666-5247(20)30098-7

• McNaughton, A. L., Paton, R. S., Edmans, M., Youngs, J., Wellens, J., Phalora, P., et al. (2022). Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. JCI Insight, 7(13), e156372. https://doi.org/10.1172/jci.insight.156372

• Meng, B., Abdullahi, A., Ferreira, I. A., Goonawardane, N., Saito, A., Kimura, I., et al. (2022). Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature, 603(7902), 706-714. https://doi.org/10.1038/s41586-022-04474-x

• Miyara, M., Saichi, M., Sterlin, D., Anna, F., Marot, S., Mathian, A., et al. (2022). Pre-COVID-19 immunity to common cold human coronaviruses induces a recall-type IgG response to SARS-CoV-2 antigens without cross-neutralisation. Frontiers in Immunology, 13, 790334. https://doi.org/10.3389/fimmu.2022.790334

• Mohammadi, M., Shayestehpour, M. y Mirzaei, H. (2021). The impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, Delta, and Lambda] on the efficacy of subunit recombinant vaccines. The Brazilian Journal of Infectious Diseases, 25(4), 101606. https://doi.org/10.1016/j.bjid.2021.101606

• Moss, P. (2022). The T cell immune response against SARS-CoV-2. Nature immunology, 23(2), 186-193. https://doi.org/10.1038/s41590-021-01122-w

• Nguyen-Contant, P., Embong, A. K., Kanagaiah, P., Chaves, F. A., Yang, H., Branche, A. R., et al. (2020). S protein-reactive IgG and memory B cell production after human SARS-CoV-2 infection includes broad reactivity to the S2 subunit. MBio, 11(5), 10-1128.https://doi.org/10.1128/mBio.01991-20

• Patel, M., Shahjin, F., Cohen, J. D., Hasan, M., Machhi, J., Chugh, H., et al. (2021). The immunopathobiology of SARS-CoV-2 infection. FEMS Microbiology Reviews, 45(6), fuab035. https://doi.org/10.1093/femsre/fuab035

• Pillai, S. (2022). SARS-CoV-2 vaccination washes away original antigenic sin. Trends in Immunology, 43(4), 271-273. https://doi.org/10.1016/j.it.2022.02.009

• Planas, D., Saunders, N., Maes, P., Guivel-Benhassine, F., Planchais, C., Buchrieser, J., et al. (2022). Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, 602(7898), 671-675. https://doi.org/10.1038/s41586-021-04389-z

• Quiros-Fernandez, I., Poorebrahim, M., Fakhr, E. y Cid-Arregui, A. (2021). Immunogenic T cell epitopes of SARS-CoV-2 are recognized by circulating memory and naïve CD8 T cells of unexposed individuals. EBioMedicine, 72, 103610. https://doi.org/10.1016/j.ebiom.2021.103610

• Reche, P. A. (2020). Potential cross-reactive immunity to SARS-CoV-2 from common human pathogens and vaccines. Frontiers in Immunology, 11, 586984. https://doi.org/10.3389/fimmu.2020.586984

• Reina J. (2022). Posible efecto del «pecado antigénico original» en la vacunación frente a las nuevas variantes del SARS-CoV-2. Revista Clínica Española, 222(2), 91-92. https://doi.org/10.1016/j.rce.2021.05.003

• Rijkers, G. T. y van Overveld, F. J. (2021). The “original antigenic sin” and its relevance for SARS-CoV-2 (COVID-19) vaccination. Clinical Immunology Communications, 1, 13-16. https://doi.org/10.1016/j.clicom.2021.10.001

• Roncati, L. y Palmieri, B. (2020). What about the original antigenic sin of the humans versus SARS-CoV-2? Medical hypotheses, 142, 109824. https://doi.org/10.1016/j.mehy.2020.109824

• Sánchez-Zuno, G. A., Matuz-Flores, M. G., González-Estevez, G., Nicoletti, F., Turrubiates-Hernández, F. J., Mangano, K. y Muñoz-Valle, J. F. (2021). A review: Antibody-dependent enhancement in COVID-19: The not so friendly side of antibodies. International journal of Immunopathology and Pharmacology, 35, 20587384211050199. https://doi.org/10.1177/20587384211050199

• Shrock E, Fujimura E, Kula T, Timms RT, Lee IH, Leng Y, et al. 2020. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science, 370(6520), eabd4250. https://doi.org/10.1126/science.abd4250

• Souris, M., Tshilolo, L., Parzy, D., Lobaloba Ingoba, L., Ntoumi, F., Kamgaing, R., et al. (2022). Pre-pandemic cross-reactive immunity against SARS-CoV-2 among Central and West African populations. Viruses, 14(10), 2259. https://doi.org/10.3390/v14102259

• Steiner, S., Sotzny, F., Bauer, S., Na, I. K., Schmueck-Henneresse, M., Corman, V. M., et al. (2020). HCoV-and SARS-CoV-2 cross-reactive T cells in CVID patients. Frontiers in Immunology, 11, 607918. https://doi.org/10.3389/fimmu.2020.607918

• Tan, W., Lu, Y., Zhang, J., Wang, J., Dan, Y., Tan, Z., et al. (2020). Viral kinetics and antibody responses in patients with COVID-19. MedRxiv, 03. https://doi.org/10.1101/2020.03.24.20042382

• Tegally, H., Moir, M., Everatt, J., Giovanetti, M., Scheepers, C., Wilkinson, E., et al. (2022). Emergence of SARS-CoV-2 omicron lineages BA. 4 and BA. 5 in South Africa. Nature Medicine, 28(9), 1785-1790. https://doi.org/10.1038/s41591-022-01911-2

• Tso, F. Y., Lidenge, S. J., Peña, P. B., Clegg, A. A., Ngowi, J. R., Mwaiselage, J., et al. (2021). High prevalence of pre-existing serological cross-reactivity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in sub-Saharan Africa. International Journal of Infectious Diseases, 102, 577-583. https://doi.org/10.1016/j.ijid.2020.10.104

• Vatti, A., Monsalve, D. M., Pacheco, Y., Chang, C., Anaya, J. M. y Gershwin, M. E. (2017). Original antigenic sin: a comprehensive review. Journal of Autoimmunity, 83, 12-21. https://doi.org/10.1016/j.jaut.2017.04.008

• Yuan, M., Wu, N. C., Zhu, X., Lee, C. C. D., So, R. T., Lv, H., et al. (2020). A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science, 368(6491), 630-633. https://doi.org/10.1126/science.abb7269

• Wang, J., Li, D., Cameron, A., Zhou, Q., Wiltse, A., Nayak, J., et al. (2022). IgG against human betacoronavirus spike proteins correlates with SARS-CoV-2 anti-spike IgG responses and COVID-19 disease severity. The Journal of Infectious Diseases, 226(3), 474-484. https://doi.org/10.1093/infdis/jiac022

• Wang, M., Guo, H., Ju, B. y Zhang, Z. (2024). Original Antigenic Sin on Antibody Response in SARS-CoV-2 Infection. Infectious Diseases & Immunity, 4(3), 132-137. https://doi.org/10.1097/ID9.0000000000000125

• Wec, A. Z., Wrapp, D., Herbert, A. S., Maurer, D. P., Haslwanter, D., Sakharkar, M., et al. (2020). Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science, 369(6504), 731-736. https://doi.org/10.1126/science.abc7424

• Wong, L. Y. y Perlman, S. (2022). Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses—are we our own worst enemy? Nature Reviews Immunology, 22(1), 47-56. https://doi.org/10.1038/s41577-021-00656-2

• Wratil, P. R., Stern, M., Priller, A., Willmann, A., Almanzar, G., Vogel, E., et al. (2022). Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nature Medicine, 28(3), 496-503. https://doi.org/10.1038/s41591-022-01715-4

• Zhang, A., Stacey, H. D., Mullarkey, C. E. y Miller, M. S. (2019). Original antigenic sin: how first exposure shapes lifelong anti–influenza virus immune responses. The Journal of Immunology, 202(2), 335-340. https://doi.org/10.4049/jimmunol.1801149